Dougherty Valley HS Chemistry - AP Acid Base – Study Questions

Name:

Period:

Seat#:

Worksheet #8

Directions: Show all work. Box your final answer.

1) For the following aqueous equilibria, designate the Brønsted-Lowry conjugate acid-base pairs and establish the weaker side.

a.	NH₃ (aq) + H₂O (<i>I</i>) ⇔ NH₄⁺ (aq) + OH⁻ (aq)			
Brø	onsted-Lowry conjugate acid:	Brønsted-Lowry conjugate base:	Weaker side:	
b.	HCN (aq) + H₂O (<i>I</i>) ⇔ H₃O⁺ (aq) + CN⁻ (aq)			
Brønsted-Lowry conjugate acid:		Brønsted-Lowry conjugate base:	Weaker side:	
c.	. $NH_4^+(aq) + CO_3^{2-}(aq) \Leftrightarrow NH_3(aq) + HCO_3^-(aq)$			
Brø	onsted-Lowry conjugate acid:	Brønsted-Lowry conjugate base:	Weaker side:	

2) Complete the Brønsted-Lowry equilibria, label the components acid or base, and pair up the conjugate acid-base pairs:

a.	$HSO_4^- + H_2O \Leftrightarrow$
b.	$NH_3 + H_2O \Leftrightarrow$
C.	$CN^- + H_2O \Leftrightarrow$
d	
ч.	
e.	$HCIO_4 + H_2O \Leftrightarrow$

Dougherty Valley HS Chemistry - AP Acid Base – Study Questions

- 3) Of the following acids, determine the items listed below
 - HNO_3 (aq) + $H_2O(I) \Leftrightarrow H_3O^+$ (aq) + NO_3^- (aq) K_a = very large [i]
 - [ii] $HSO_4^-(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + SO_4^{2-}(aq)$ $K_a = 1.2 \times 10^{-2}$
 - $K_a = 4.0 \times 10^{-10}$ [iii] HCN (aq) + H₂O(l) \Leftrightarrow H₃O⁺ (aq) + CN– (aq)
 - [iv] H_2CO_3 (aq) + $H_2O(I) \Leftrightarrow H_3O^+$ (aq) + HCO_3^- (aq) $K_a = 4.2 \times 10^{-7}$ $K_a = 5.6 \times 10^{-10}$
 - $[v] NH_4^+ (aq) + H_2O(I) \Leftrightarrow H_3O^+ (aq) + NH_3 (aq)$
 - [vi] HF (aq) + H₂O(h \Leftrightarrow H₃O⁺ (aq) + F⁻ (aq)

a. The strongest acid	 b. The acid that produces the lowest [] of hydronium ions per mole of acid 	c. The acid with the strongest conjugate base
d. The diprotic acid	e. The "strong" acid	f. The acid with the weakest conjugate base.

 $K_a = 7.2 \times 10^{-4}$

4) What is the pH of the following?

a. 0.0010 M HCl solution? 3.0	
b. 0.15 M KOH solution? <u>13.2</u>	
$\mathbf{c} * 10^{-8} \text{ M HNO}_{2}$ solution? 6.96	*Hint_ this is SUPER tricky, when yery low [H+] you can't ignore the [H+] coming from the auto
ionization of water! Remember $H_2 O \leftrightarrow H^+$	+ OH , you should remember the []'s of each substance from the auto ionization of water

5) Complete the table for each aqueous solution at 25°C. State whether the solutions are acidic or basic. You do not need to show your work for all of these, but you can always use binder paper if needed!

[H ₃ O ⁺]	[OH-]	рН	рОН	Acidic or Basic
2.0 x 10 ⁻⁵				
		6.25		
	5.6 x 10 ⁻²			
			9.20	
8.7 x 10 ⁻¹⁰				

6)	If the pH of a sample of rainwater is 4.62, what is the hydronium ion concentration [H ₃ O ⁺] and the hydroxide ion concentration [OH ⁻] in the rainwater? <u>[H₃O⁺] = 2.4E⁻⁵, [OH⁻] = 4.2E⁻¹⁰</u>
7)	Hydroxylamine is a weak base with a $K_b = 6.6 \times 10^{-9}$. What is the pH of a 0.36 M solution of hydroxylamine in water at 25°C? <u>9.69</u>

- 8) Which of the following salts, when dissolved in water to produce 0.10 M solutions, would have the lowest pH? Choose the correct multiple choice answer and then explain why.
 - a. Sodium acetate
 - b. Potassium chloride
 - c. Sodium bisulfate
 - d. Magnesium nitrate
 - e. Potassium cyanide

Explain why:

9) Cyanic acid HOCN has a K_a = 3.5 x 10⁻⁴, what is the K_b for the cyanate ion OCN⁻? $K_b = 2.86 \times 10^{-11}$

10) Phenol is a relatively weak acid, $K_a = 1.3 \times 10^{-10}$. How does the strength of its conjugate base compare with the strength of ammonia ($K_b = 1.8 \times 10^{-5}$), the acetate ion ($K_b = 5.55 \times 10^{-10}$), and sodium hydroxide?